Researchers achieve EV battery breakthrough with silicon-based materials and gel electrolytes, moving closer to a 1,000-kilometer range on a single charge.
Ok, maybe it’s possible that they aren’t using a very focused electron beam, but usually when scientists think about using an electron beam they mean something inside of a machine like an SEM or e-beam lithograph. These only operate on small areas.
If an unfocused beam (and therefore lower energy density) can be used, then this could likely be scaled more easily. Even if a focused beam is needed, scaling may still be possible, but will likely require additional developments to create that process.
Can you expand on this? There used to be multiple electron beams in every house in America.
Ok, maybe it’s possible that they aren’t using a very focused electron beam, but usually when scientists think about using an electron beam they mean something inside of a machine like an SEM or e-beam lithograph. These only operate on small areas.
If an unfocused beam (and therefore lower energy density) can be used, then this could likely be scaled more easily. Even if a focused beam is needed, scaling may still be possible, but will likely require additional developments to create that process.
I’m using mine right now.