I’ve been saying this for about a year since seeing the Othello GPT research, but it’s nice to see more minds changing as the research builds up.
Edit: Because people aren’t actually reading and just commenting based on the headline, a relevant part of the article:
New research may have intimations of an answer. A theory developed by Sanjeev Arora of Princeton University and Anirudh Goyal, a research scientist at Google DeepMind, suggests that the largest of today’s LLMs are not stochastic parrots. The authors argue that as these models get bigger and are trained on more data, they improve on individual language-related abilities and also develop new ones by combining skills in a manner that hints at understanding — combinations that were unlikely to exist in the training data.
This theoretical approach, which provides a mathematically provable argument for how and why an LLM can develop so many abilities, has convinced experts like Hinton, and others. And when Arora and his team tested some of its predictions, they found that these models behaved almost exactly as expected. From all accounts, they’ve made a strong case that the largest LLMs are not just parroting what they’ve seen before.
“[They] cannot be just mimicking what has been seen in the training data,” said Sébastien Bubeck, a mathematician and computer scientist at Microsoft Research who was not part of the work. “That’s the basic insight.”
Is there a difference between being a “stochastic parrot” and understanding text? No matter what you call it, an LLM will always produces the same output with the same input if it is at the same state.
An LLM will never say “I don’t know” unless it’s been trained to say “I don’t know”, it doesn’t have the concept of understanding. And so I lean on calling it a “stochastic parrot”. Although I think there is some interesting philosophic exercises, you could do on whether humans are much different and if understanding is just an illusion.
You might want to look up the definition of ‘stochastic.’
They’re not wrong. Randomness in computing is what we call “pseudo-random” in that it is deterministic provided that you start from same state or “seed”.
That is the quote from the article, not my words. Stochastic parrot is an oxymoron.
What’s a quote from the article? The term stochastic parrot? It opens on saying that might be an inaccurate description.
How do you know a human wouldn’t do the same? We lack the ability to perform the experiment.
Also a very human behaviour, in my experience.