Ah. IR^n is separable, though. By Cantor’s mentioned theorem (which is irritatingly not cited) it must be order-isomorphic to IR if it meets the 3 conditions and is separable.
There has to be a simple example, though, right? Suslin added the fourth condition. I thought of the long line, but that seemed tricky for a couple of reasons.
I didn’t mean IR^n with its usual topology. I meant IR^n with the order topology for the dictionary order. IIANM you can construct an uncountable set of pairwise disjoint open intervals in this topology so it can’t have a countable dense subset. But as I said it’s been years since I touched a topology book.
I think you could just take an open interval in the order topology and then create a collection by turning the first dimension into a parameter. IIANM for each value of the parameter you’d get an open set, they’d be pairwise disjoint, and there’d be uncountably many of them.
IR as in irrationals? Would that be complete? Actually, I’m realising property 3 is kind of confusing as written in the wiki.
IR as in the real numbers in fake blackboard bold :)
Ah. IR^n is separable, though. By Cantor’s mentioned theorem (which is irritatingly not cited) it must be order-isomorphic to IR if it meets the 3 conditions and is separable.
There has to be a simple example, though, right? Suslin added the fourth condition. I thought of the long line, but that seemed tricky for a couple of reasons.
I didn’t mean IR^n with its usual topology. I meant IR^n with the order topology for the dictionary order. IIANM you can construct an uncountable set of pairwise disjoint open intervals in this topology so it can’t have a countable dense subset. But as I said it’s been years since I touched a topology book.
Hmm. Do you have a construction in mind?
I think you could just take an open interval in the order topology and then create a collection by turning the first dimension into a parameter. IIANM for each value of the parameter you’d get an open set, they’d be pairwise disjoint, and there’d be uncountably many of them.
Ah, you’re right, why didn’t I think of that? Thanks for all the help!